PROJECTIONS OF PLANES

In this topic various plane figures are the objects.

What is usually asked in the problem?

To draw their projections means F.V, T.V. \& S.V.

What will be given in the problem?

1. Description of the plane figure.
2. It's position with HP and VP.

In which manner it’s position with HP \& VP will be described?

1. Inclination of it's SURFACE with one of the reference planes will be given.
2. Inclination of one of it's EDGES with other reference plane will be given (Hence this will be a case of an object inclined to both reference Planes.)

Study the illustration showing

PICTORIAL PRESENTATION

SURFACE INCLINED TO HP PICTORIAL PRESENTATION

TV- Reduced Shape

ONE SMALL SIDE INCLINED TO VP PICTORIAL PRESENTATION

PROCEDURE OF SOLVING THE PROBLEM:

$\square||\leq|>D$
in three steps each problem can be solved:(As Shown In Previous Illustration)
STEP 1. Assume suitable conditions \& draw Fv \& Tv of initial position.
STEP 2. Now consider surface inclination \& draw $2^{\text {nd }} \mathrm{Fv}$ \& Tv.
STEP 3. After this,consider side/edge inclination and draw $3^{\text {rd }}$ (final) Fv \& Tv.
ASSUMPTIONS FOR INITIAL POSITION:

(Initial Position means assuming surface // to HP or VP)

1.If in problem surface is inclined to HP - assume it // HP Or If surface is inclined to VP - assume it // to VP
2. Now if surface is assumed // to HP- It's TV will show True Shape.

And If surface is assumed // to VP - It's FV will show True Shape.
3. Hence begin with drawing TV or FV as True Shape.
4. While drawing this True Shape -
keep one side/edge (which is making inclination) perpendicular to xy line (similar to pair no. A on previous page illustration).
Jow Complete STEP 2. By making surface inclined to the resp plane \& project it's other vie (Ref. 2nd pair (B) on previous page illustration)
Now Complete STEP 3. By making side inclined to the resp plane \& project it's other view. (Ref. 3nd pair (C) on previous page illustration)

Problem 1:

Rectangle 30 mm and 50 mm sides is resting on HP on one small side which is 30^{0} inclined to VP,while the surface of the plane makes 45^{0} inclination with HP. Draw it's projections.

Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------// to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? ---One small side. Hence begin with TV, draw rectangle below X-Y drawing one small side vertical.

Problem 2:

A regular pentagon of 30 mm sides is resting on HP on one of it's sides with it's surface 45^{0} inclined to HP.
Draw it's projections when the side in HP makes 30° angle with VP

SURFACE AND SIDE INCLINATIONS ARE DIRECTLY GIVEN.

Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? -------- any side. Hence begin with TV,draw pentagon below X-Y line, taking one side vertical.

Problem 3:
A hexagonal lamina has its one side in HP and Its apposite parallel side is 25 mm above Hp and In Vp. Draw it's projections.
Take side of hexagon 30 mm long.

Read problem and answer following questions

1. Surface inclined to which plane? HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --TV
4. Which diameter horizontal? \qquad $A C$

Hence begin with TV,draw rhombus below

ONLY CHANGE is the manner in which surface inclination is described:
One side on Hp \& it's opposite side 25 mm above Hp .
Hence redraw $1^{\text {st }} \mathrm{Fv}$ as a $2^{\text {nd }}$ Fv making above arrangemen Keep a'b' on xy \& d'e' 25 mm above xy.

Problem 4: End A of diameter $A B$ of a circle is in HP

A nd end B is in VP.Diameter $A B, 50 \mathrm{~mm}$ long is 30° \& 60° inclined to HP \& VP respectively. Draw projections of circle.

Read problem and answer following questions

1. Surface inclined to which plane? HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --The problem is similar to previous problem of circle - no.TV But in the $3^{\text {rd }}$ step there is one more change. Like $9^{\text {th }}$ problem True Length inclination of dia. AB is defi
4. Which diameter horizontal? \qquad but if you carefully note - the the SUM of it's inclinations $A A B H P \& V P$ is 90°. Means Line AB lies in a Profile Plane.

Hence begin with TY,draw CIRCLE below Hence it's both Tv \& Fv must arrive on one single projector. X-Y line, taking DIA. AB // to X-Y So do the construction accordingly AND note the case carefully..

SOLVE SEPARATELY ON DRAWING SHEET GIVING NAMES TO VARIOUS POINTS AS USUAL, AS THE CASE IS IMPORTANT

FREELY SUSPENDED CASES.

IMPORTANT POINTS

Problem 12:

An isosceles triangle of 40 mm long base side, 60 mm long altitude Is freely suspended from one corner of Base side.It's plane is 45° inclined to Vp. Draw it's projections.
1.In this case the plane of the figure always remains perpendicular to Hp . 2.It may remain parallel or inclined to Vp.
3.Hence TV in this case will be always a LINE view.
4.Assuming surface // to Vp, draw true shape in suspended position as FV. (Here keep line joining point of contact \& centroid of fig. vertical)
5.Always begin with FV as a True Shape but in a suspended position. AS shown in $1^{\text {st }} \mathrm{FV}$.

First draw a given triangle With given dimensions, Locate it's centroid position And join it with point of suspension.

Similarly solve next problem
of Semi-circle

Problem 13
:A semicircle of 100 mm diameter is suspended from a point on its straight edge 30 mm from the midpoint of that edge so that the surface makes an angle of 45° with VP. Draw its projections.
1.In this case the plane of the figure always remains perpendicular to Hp . 2.It may remain parallel or inclined to Vp.
3. Hence $T V$ in this case will be always a LINE view.
4.Assuming surface // to Vp, draw true shape in suspended position as FV. (Here keep line joining point of contact \& centroid of fig. vertical)
5.Always begin with FV as a True Shape but in a suspended position.

AS shown in $1^{\text {st }} \mathrm{FV}$.

